Đề toán thi vào lớp 10 tp hcm

Lớp 1

Đề thi lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng sủa tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Lớp 3 - liên kết tri thức

Lớp 3 - Chân trời sáng tạo

Lớp 3 - Cánh diều

Tài liệu tham khảo

Lớp 4

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Lớp 6

Lớp 6 - liên kết tri thức

Lớp 6 - Chân trời sáng sủa tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 7

Lớp 7 - liên kết tri thức

Lớp 7 - Chân trời sáng tạo

Lớp 7 - Cánh diều

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 10

Lớp 10 - liên kết tri thức

Lớp 10 - Chân trời sáng tạo

Lớp 10 - Cánh diều

Sách/Vở bài bác tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề và Trắc nghiệm

IT

Ngữ pháp tiếng Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Nhằm giúp các bạn ôn luyện cùng giành được kết quả cao trong kì thi tuyển sinh vào lớp 10, carlocaione.org soạn tuyển tập Đề thi vào lớp 10 môn Toán (có đáp án) theo cấu tạo ra đề Trắc nghiệm - tự luận mới. Cùng với đó là những dạng bài tập hay có trong đề thi vào lớp 10 môn Toán với phương thức giải đưa ra tiết. Mong muốn tài liệu này sẽ giúp đỡ học sinh ôn luyện, củng cố kiến thức và kỹ năng và sẵn sàng tốt mang đến kì thi tuyển chọn sinh vào lớp 10 môn Toán năm 2022.

Bạn đang xem: Đề toán thi vào lớp 10 tp hcm

I/ Đề thi môn Toán vào lớp 10 (không chuyên)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 gồm đáp án (Trắc nghiệm - tự luận)

Bộ Đề thi vào lớp 10 môn Toán năm 2022 gồm đáp án (Tự luận)

Bộ Đề thi vào lớp 10 môn Toán TP hà thành năm 2021 - 2022 có đáp án

II/ Đề thi môn Toán vào lớp 10 (chuyên)

III/ các dạng bài bác tập ôn thi vào lớp 10 môn Toán

Tài liệu ôn thi vào lớp 10 môn Toán

Sở giáo dục đào tạo và Đào chế tạo .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học 2021 - 2022

Thời gian: 120 phút

Câu 1: (2 điểm) Rút gọn gàng biểu thức sau:

a) A=12−253+60.

b) B=4xx−3.x2−6x+9x với 0 x2−2mx+m2−m+3=0 (1), với m là tham số.

a) Giải phương trình (1) cùng với m = 4.

b) Tìm các giá trị của m nhằm phương trình (1) có hai nghiệm và biểu thức: P=x1x2−x1−x2 đạt giá trị nhỏ tuổi nhất.

Câu 3: (1,5 điểm)

Tình cảm gia đình có sức mạnh phi trường. Chúng ta Vì quyết chiến – Cậu bé nhỏ 13 tuổi qua thương nhớ em trai của mình đã vượt qua một quãng con đường dài 180km từ sơn La đến bệnh viện Nhi Trung ương tp hà nội để thăm em. Sau khi đi bằng xe đạp 7 giờ, chúng ta ấy được lên xe khách với đi tiếp 1 giờ 1/2 tiếng nữa thì tới nơi. Biết tốc độ của xe cộ khách lớn hơn vận tốc của xe đạp điện là 35 km/h. Tính vận tốc xe đạp của khách hàng Chiến.

Câu 4: (3,0 điểm)

mang lại đường tròn (O) bao gồm hai đường kính AB với MN vuông góc cùng với nhau. Bên trên tia đối của tia MA đem điểm C khác điểm M. Kẻ MH vuông góc với BC (H ở trong BC).

a) chứng tỏ BOMH là tứ giác nội tiếp.

b) MB cắt OH tại E. Chứng minh ME.MH = BE.HC.

c) gọi giao điểm của con đường tròn (O) với mặt đường tròn nước ngoài tiếp ∆MHC là K. Minh chứng 3 điểm C, K, E trực tiếp hàng.

Câu 5: (1,0 điểm) Giải phương trình: 5x2+27x+25−5x+1=x2−4.

 

HƯỚNG DẪN GIẢI ĐỀ SỐ 03

Câu 1:

a) A=12−253+60=36−215+215=36=6

b) cùng với 0 B=4xx−3.x2−6x+9x =2xx−3.x−32x=−2x3−x.x−3x=−2x3−x3−xx=−2

Câu 2:

1) vì đồ thị hàm số đi qua điểm M(1; –1) cần a+ b = -1

đồ gia dụng thị hàm số trải qua điểm N(2; 1) nên 2a + b = 1

yêu thương cầu bài toán a+b=−12a+b=1⇔a=2b=−3

Vậy hàm số bắt buộc tìm là y = 2x – 3.

2)

a) với m = 4, phương trình (1) trở thành: x2−8x+15=0. Có Δ=1>0

Phương trình tất cả hai nghệm phân biệt x1=3; x2=5;

b) Ta có: ∆" = −m2−1.m2−m+3=m2−m2+m−3=m−3.

Phương trình (1) có hai nghiệm x1, x2 khi ∆" 0 ⇔ m−3≥0⇔m≥3

Với m≥3, theo định lí Vi–ét ta có: x1+x2=2mx1.x2=m2−m+3

Theo bài xích ra: P=x1x2−x1−x2=x1x2−(x1+x2)

Áp va định lí Vi–ét ta được:

P=m2−m+3−2m=m2−3m+3 =m(m−3)+3

vì chưng m≥3 nên m(m−3)≥0 , suy ra P≥3. Lốt " = " xẩy ra khi m = 3.

Vậy giá chỉ trị nhỏ dại nhất của p. Là 3 lúc m = 3.

Câu 3:

Đổi 1 giờ 1/2 tiếng = 1,5 giờ.

Xem thêm: Các Món Gỏi Ngon Mien Nam Bộ, Nghe Tên Là Thèm, 5 Đặc Sản Gỏi Nam Bộ Trứ Danh Ngon Miễn Chê

Gọi tốc độ xe đạp của công ty Chiến là x (km/h, x > 0)

tốc độ của xe hơi là x + 35 (km/h)

Quãng đường các bạn Chiến đi bằng xe đạp điện là: 7x (km)

Quãng đường chúng ta Chiến đi bằng ô tô là: 1,5(x + 35)(km)

do tổng quãng đường bạn Chiến đi là 180km nên ta có phương trình:

7x + 1,5(x + 35) = 180 7x + 1,5x + 52,2 = 180 8,5x = 127,5 x = 15

(thỏa mãn)

Vậy các bạn Chiến đi bằng xe đạp với tốc độ là 15 km/h.

Câu 4:

*

a) Ta có: MOB^=900 (do AB⊥MN) và MHB^=900(do MH⊥BC)

Suy ra: MOB^+MHB^=900+900=1800

=> Tứ giác BOMH nội tiếp.

b) ∆OMB vuông cân tại O đề nghị OBM^=OMB^ (1)

Tứ giác BOMH nội tiếp yêu cầu OBM^=OHM^ (cùng chắn cung OM)

và OMB^=OHB^ (cùng chắn cung OB) (2)

từ (1) và (2) suy ra: OHM^=OHB^

=> HO là tia phân giác của MHB^ => MEBE=MHHB (3)

Áp dụng hệ thức lượng vào ∆BMC vuông trên M gồm MH là mặt đường cao

Ta có: HM2=HC.HB⇒HMHB=HCHM (4)

tự (3) và (4) suy ra: MEBE=HCHM5⇒ME.HM=BE.HC (đpcm)

c) bởi vì MHC^=900(do MH⊥BC) đề xuất đường tròn ngoại tiếp ∆MHC có đường kính là MC

⇒MKC^=900 (góc nội tiếp chắn nửa mặt đường tròn)

MN là đường kính của con đường tròn (O) nên MKN^=900 (góc nội tiếp chắn nửa con đường tròn)

⇒MKC^+MKN^=1800

=> 3 điểm C, K, N thẳng mặt hàng (*)

∆MHC ∽ ∆BMC (g.g) ⇒HCMH=MCBM. 

nhưng mà MB = BN (do ∆MBN cân tại B)

=>HCHM=MCBN, kết phù hợp với MEBE=HCHM (theo (5) )

Suy ra: MCBN=MEBE . Mà EBN^=EMC^=900 => ∆MCE ∽ ∆BNE (c.g.c)

⇒MEC^=BEN^, mà MEC^+BEC^=1800 (do 3 điểm M, E, B thẳng hàng)

⇒BEC^+BEN^=1800

=> 3 điểm C, E, N thẳng mặt hàng (**)

tự (*) cùng (**) suy ra 4 điểm C, K, E, N trực tiếp hàng

=> 3 điểm C, K, E thẳng hàng (đpcm)

Câu 5: ĐKXĐ: x≥2

Ta có: 5x2+27x+25−5x+1=x2−4

⇔5x2+27x+25=5x+1+x2−4

⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)

⇔4x2+2x+4=10x+1)(x2−4)⇔2x2+x+2=5(x+1)(x2−4) (1)

giải pháp 1:

(1) ⇔x2−2x−44x2−13x−26=0

Giải ra được:

x=1−5(loại); x=1+5(nhận); x=13+3658 (nhận); x=13−3658 (loại)

phương pháp 2:

(1) ⇔5x2−x−2x+2=2x2−x−2+3x+2 (2)

Đặt a=x2−x+2; b=x+2 (a≥0; b≥0)

thời điểm đó, phương trình (2) trở thành:

5ab=2a2+3b2⇔2a2−5ab+3b2=0⇔a−b2a−3b=0⇔a=b2a=3b (*)

 – với a = b thì x2−x−2=x+2⇔x2−2x−4⇔x=1−5(ktm)x=1+5(tm)

 – cùng với 2a = 3b thì 2x2−x−2=3x+2⇔4x2−13x−26=0⇔x=13+3658 (tm)x=13−3658 (ktm)

Vậy phương trình đã cho có hai nghiệm: x=1+5 và x=13+3658 .

Sở giáo dục đào tạo và Đào tạo nên .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Sở giáo dục và Đào tạo thành .....

Kỳ thi tuyển sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Phần I. Trắc nghiệm (2 điểm)

Câu 1: Điều kiện khẳng định của biểu thức

*
là:

A.x ≠ 0 B.x ≥ 1 C.x ≥ 1 hoặc x 2 và con đường thẳng (d) y =

*
+ 3

A. (2; 2)B. ( 2; 2) cùng (0; 0)

C.(-3; ) D.(2; 2) cùng (-3; )

Câu 5: quý giá của k nhằm phương trình x2 + 3x + 2k = 0 gồm 2 nghiệm trái vệt là:

A. K > 0B. K 2 D. K (2 điểm)

1) Thu gọn biểu thức

*

2) giải phương trình với hệ phương trình sau:

a) 3x2 + 5x - 8 = 0

b) (x2 + 5)2 = 3(x2 + 5) + 4

*

Bài 2: (1,5 điểm) Trong khía cạnh phẳng tọa độ Oxy mang đến Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = -1 , hãy vẽ 2 đồ vật thị hàm số trên và một hệ trục tọa độ

b) tra cứu m để (d) cùng (P) cắt nhau trên 2 điểm riêng biệt : A (x1; y1 );B(x2; y2) làm sao để cho tổng những tung độ của nhị giao điểm bằng 2 .

Bài 3: (1 điểm) Rút gọn biểu thức sau:

*

Tìm x để A (3,5 điểm) mang đến đường tròn (O) tất cả dây cung CD rứa định. Hotline M là vấn đề nằm ở trung tâm cung bé dại CD. Đường kính MN của mặt đường tròn (O) giảm dây CD trên I. đem điểm E bất kỳ trên cung bự CD, (E không giống C,D,N); ME cắt CD trên K. Những đường thẳng NE với CD giảm nhau tại P.

a) minh chứng rằng :Tứ giác IKEN nội tiếp

b) bệnh minh: EI.MN = NK.ME

c) NK giảm MP trên Q. Hội chứng minh: IK là phân giác của góc EIQ

d) tự C vẽ đường thẳng vuông góc cùng với EN cắt đường trực tiếp DE trên H. Chứng tỏ khi E cầm tay trên cung khủng CD (E không giống C, D, N) thì H luôn luôn chạy bên trên một đường nỗ lực định.

Phần I. Trắc nghiệm

1.C2.D3.A4.D
5.B6.A7.D8.B

Phần II. Từ luận

Bài 1:

*

2) a) 3x2 + 5x - 8 = 0

Δ = 52 - 4.3.(-8) = 121 => √Δ = 11

*

Vậy phương trình sẽ cho tất cả tập nghiệm là S =

*

b) (x2 + 3)2 = 3(x2 + 3) + 4

Đặt x2 + 3 = t (t ≥ 3), phương trình đang cho trở thành

t2 - 3t - 4 = 0

Δ = 32 - 4.(-4) = 25> 0

Phương trình bao gồm 2 nghiệm biệt lập :

*

Do t ≥ 3 đề xuất t = 4

Với t = 4, ta có: x2 + 3 = 4 ⇔ x2 = 1 ⇔ x = ±1

Vậy phương trình vẫn cho gồm 2 nghiệm x = ± 1

*

Bài 2:

Trong phương diện phẳng tọa độ Oxy mang lại Parabol (P) : y = x2 và đường thẳng (d) :

y = 2mx – 2m + 1

a) cùng với m = 1; (d): y = 2x – 1

Bảng quý giá

x01
y = 2x – 1-11

(P) : y = x2

Bảng giá bán trị

x -2 -1 0 1 2
y = x2 4 1 0 1 4

Đồ thị hàm số y = x2 là con đường parabol nằm phía bên trên trục hoành, nhấn Oy làm cho trục đối xứng và nhận điểm O(0; 0) là đỉnh cùng điểm thấp độc nhất vô nhị

*

b) cho Parabol (P) : y = x2 và mặt đường thẳng (d) :

y = 2mx – 2m + 1

Phương trình hoành độ giao điểm của (P) với (d) là:

x2 = 2mx - 2m + 1

⇔ x2 - 2mx + 2m - 1 = 0

Δ" = mét vuông - (2m - 1)=(m - 1)2

(d) cùng (P) cắt nhau trên 2 điểm khác nhau khi và chỉ khi phương trình hoành độ giao điểm bao gồm 2 nghiệm minh bạch

⇔ Δ" > 0 ⇔ (m - 1)2 > 0 ⇔ m ≠ 1

Khi đó (d) cắt (P) trên 2 điểm A(x1, 2mx1 – 2m + 1) ; B ( x2, 2mx2 – 2m + 1)

Theo định lí Vi-et ta có: x1 + x2 = 2m

Từ trả thiết đề bài, tổng những tung độ giao điểm bởi 2 bắt buộc ta có:

2mx1 – 2m + 1 + 2mx2 – 2m + 1 = 2

⇔ 2m (x1 + x2) – 4m + 2 = 2

⇔ 4m2 - 4m = 0 ⇔ 4m(m - 1) = 0

*

Đối chiếu với điều kiện m ≠ 1, thì m = 0 thỏa mãn.

Bài 3:

*

A > 0 ⇔

*
> 0 ⇔ 5 - 5√x > 0 ⇔ √x 0 lúc 0 ∠KIN = 90o

Xét tứ giác IKEN có:

∠KIN = 90o

∠KEN = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=> ∠KIN + ∠KEN = 180o

=> Tứ giác IKEN là tứ giác nội tiếp

b) Xét ΔMEI với ΔMNK có:

∠NME là góc chung

∠IEM = ∠MNK ( 2 góc nội tiếp cùng chắn cung IK)

=> ΔMEI ∼ ΔMNK (g.g)

*
=>EI.MN = NK.ME

c) Xét tam giác MNP có:

ME ⊥ NP; PI ⊥ MN

ME giao PI trên K

=> K là trực vai trung phong của tam giác MNP

=> ∠NQP = 90o

Xét tứ giác NIQP có:

∠NQP = 90o

∠NIP = 90o

=> 2 đỉnh Q, I cùng quan sát cạnh NP dưới 1 góc cân nhau

=> tứ giác NIQP là tứ giác nội tiếp

=> ∠QIP = ∠QNP (2 góc nội tiếp cùng chắn cung PQ)(1)

Mặt khác IKEN là tứ giác nội tiếp

=> ∠KIE = ∠KNE (2 góc nội tiếp thuộc chắn cung KE)(2)

Từ (1) và (2)

=> ∠QIP = ∠KIE

=> IE là tia phân giác của ∠QIE

d) Ta có:

*

Mà ∠DEM = ∠MEC (2 góc nội tiếp chắn 2 cung bằng nhau)

=> ∠EHC = ∠ECH => ΔEHC cân nặng tại E

=> EN là con đường trung trực của CH

Xét đường tròn (O) có: Đường kính OM vuông góc cùng với dây CD trên I

=> NI là đường trung trực của CD => NC = ND

EN là con đường trung trực của CH => NC = NH

=> N là trung khu đường tròn ngoại tiếp tam giác DCH

=> H ∈ (N, NC)

Mà N, C cố định => H thuộc mặt đường tròn cố định

Sở giáo dục và đào tạo và Đào tạo thành .....

Kỳ thi tuyển chọn sinh vào lớp 10

Đề thi môn: Toán

Năm học tập 2021 - 2022

Thời gian: 120 phút

Bài 1 : ( 1,5 điểm)

1) Rút gọn gàng biểu thức sau:

*

2) cho biểu thức

*

a) Rút gọn gàng biểu thức M.

b) Tìm các giá trị nguyên của x để giá trị tương ứng của M nguyên.

Bài 2 : ( 1,5 điểm)

1) kiếm tìm m để hai phương trình sau có ít nhất một nghiệm chung:

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

2) Tìm thông số a, b của đường thẳng y = ax + b biết mặt đường thẳng trên trải qua hai điểm là

(1; -1) với (3; 5)

Bài 3 : ( 2,5 điểm)

1) mang lại Phương trình :x2 + (m - 1) x + 5m - 6 = 0

a) giải phương trình khi m = - 1

b) kiếm tìm m để 2 nghiệm x1 với x2 vừa lòng hệ thức: 4x1 + 3x2 = 1

2) Giải việc sau bằng phương pháp lập phương trình hoặc hệ phương trình

Một công ty vận tải điều một trong những xe cài để chở 90 tấn hàng. Lúc đến kho hàng thì có 2 xe pháo bị hỏng đề xuất để chở hết số sản phẩm thì từng xe sót lại phải chở thêm 0,5 tấn so với ý định ban đầu. Hỏi số xe cộ được điều đến chở sản phẩm là từng nào xe? Biết rằng cân nặng hàng chở nghỉ ngơi mỗi xe cộ là như nhau.

Bài 4 : ( 3,5 điểm)

1) cho (O; R), dây BC cố định không trải qua tâm O, A là vấn đề bất kì trên cung to BC. Cha đường cao AD, BE, CF của tam giác ABC giảm nhau tại H.

a) chứng tỏ tứ giác HDBF, BCEF nội tiếp

b) K là điểm đối xứng của A qua O. Chứng tỏ HK đi qua trung điểm của BC

c) Gỉa sử ∠BAC = 60o. Chứng minh Δ AHO cân nặng

2) Một hình chữ nhật có chiều dài 3 cm, chiều rộng bởi 2 cm, xoay hình chữ nhật này một vòng xung quanh chiều dài của nó được một hình trụ. Tính diện tích toàn phần của hình trụ.

Bài 5 : ( 1 điểm)

1) đến a, b là 2 số thực làm thế nào cho a3 + b3 = 2. Bệnh minh:

0 √x - 1 ∈ Ư (2)

√x - 1 ∈ ±1; ±2

Ta có bảng sau:

√x-1- 2-112
√x-1023
xKhông mãi sau x049

Vậy với x = 0; 4; 9 thì M nhận giá trị nguyên.

Bài 2 :

1)

2x2 – (3m + 2)x + 12 = 0

4x2 – (9m – 2)x + 36 = 0

Đặt y = x2,khi kia ta có:

*

Giải (*):

(6 - 3m)x = -12

Phương trình (*) có nghiệm 6 - 3m ≠ 0 m ≠ 2

Khi đó, phương trình bao gồm nghiệm:

*

Theo giải pháp đặt, ta có: y = x2

*

=>16(m-2) = 16

m = 3

Thay m= 3 vào 2 phương trình ban đầu,ta có:

*

Vậy khi m =3 thì hai phương trình trên gồm nghiệm phổ biến và nghiệm bình thường là 4

2) Tìm thông số a, b của đường thẳng y = ax + b biết mặt đường thẳng trên trải qua hai điểm là

(1; -1) và (3; 5)

Đường trực tiếp y = ax + b đi qua hai điểm (1; -1) cùng (3; 5) đề xuất ta có:

*

Vậy con đường thẳng đề nghị tìm là y = 2x – 3

Bài 3 :

1) mang lại Phương trình : x2 + (m - 1)x + 5m - 6 = 0

a) lúc m = -1, phương trình trở thành:

x2 - 2x - 11 = 0

Δ" = 1 + 11=12 => √(Δ") = 2√3

Phương trình có nghiệm:

x1 = 1 + 2√3

x2 = 1 - 2√3

Vậy hệ phương trình gồm tập nghiệm là:

S =1 + 2√3; 1 - 2√3

b)

x2 + (m - 1)x + 5m - 6 = 0

Ta có:

Δ = (m - 1)2 - 4(5m - 6)

Δ = m2 - 2m + 1 - 20m + 24 = m2 - 22m + 25

Phương trình có hai nghiệm ⇔ Δ ≥ 0 ⇔ m2 - 22m + 25 ≥ 0,(*)

Theo hệ thức Vi-ét ta có:

*

Theo đề bài ta có:

4x1 + 3x2 =1 ⇔ x1 + 3(x1 + x2 ) = 1

⇔ x1 + 3(1 - m) = 1

⇔ x1= 3m - 2

=> x2 = 1 - m - x1 = 1 - m - (3m - 2) = 3 - 4m

Do kia ta có:

(3m - 2)(3 - 4m) = 5m - 6

⇔ 9m - 12m2 - 6 + 8m = 5m - 6

⇔ - 12m2 + 12m = 0

⇔ -12m(m - 1) = 0

*

Thay m = 0 vào (*) thấy thảo mãn

Thay m = 1 vào (*) thấy thảo mãn

Vậy gồm hai quý hiếm của m thỏa mãn bài toán là m = 0 với m = 1.

2)

Gọi số lượng xe được điều cho là x (xe) (x > 0; x ∈ N)

=>Khối lượng hàng mỗi xe pháo chở là:

*
(tấn)

Do có 2 xe pháo nghỉ yêu cầu mỗi xe còn sót lại phải chở thêm 0,5 tấn so với dự định nên từng xe buộc phải chở:

*

Khi đó ta bao gồm phương trình:

*
.(x-2)=90

=>(180 + x)(x - 2) = 180x

x2 - 2x - 360 = 0

*

Vậy số xe pháo được điều cho là 20 xe

Bài 4 :

*

a) Xét tứ giác BDHF có:

∠BDH = 90o (AD là mặt đường cao)

∠BFH = 90o (CF là con đường cao)

=>∠BDH + ∠BFH = 180o

=> Tứ giác BDHF là tứ giác nội tiếp

Xét tứ giác BCEF có:

∠BFC = 90o (CF là mặt đường cao)

∠BEC = 90o (BE là đường cao)

=> 2 đỉnh E và F cùng chú ý cạnh BC bên dưới 1 góc vuông

=> Tứ giác BCEF là tứ giác nội tiếp

b) Ta có:

∠KBA) = 90o (góc nội tiếp chắn nửa con đường tròn)

=>KB⊥AB

Mà CH⊥AB (CH là con đường cao)

=> KB // CH

Tương tự:

∠KCA) = 90o (góc nội tiếp chắn nửa mặt đường tròn)

=>KC⊥AC

BH⊥AC (BH là mặt đường cao)

=> HB // ông chồng

Xét tứ giác BKCF có:

KB // CH

HB // CK

=> Tứ giác BKCH là hình bình hành

=> hai đường chéo cánh BC và KH giảm nhau trên trung điểm mỗi con đường

=> HK trải qua trung điểm của BC

c) call M là trung điểm của BC

Xét tam giác AHK có:

O là trung điểm của AK

M là trung điểm của BC

=> OM là đường trung bình của tam giác AHK

=> OM = AH (1)

ΔBOC cân nặng tại O gồm OM là trung tuyến đường

=> OM là tia phân giác của ∠BOC

=> ∠MOC = ∠BAC = 60o (= ∠BOC )

Xét tam giác MOC vuông tại M có:

OM = OC.cos⁡(MOC) = OC.cos⁡60o= OC = OA (2)

Từ (1) cùng (2) => OA = AH => ΔOAH cân tại A

2)

Quay hình chữ nhật vòng xung quanh chiều nhiều năm được một hình tròn có bán kính đáy là R= 2 cm, chiều cao là h = 3 cm